![]() |
Home | Search | Browse | About IPO | Staff | Links |
By JAMES KROHE JR. P u b l i c w a t e r s u p p l i e s Water, water, everywhere, And all the lakes did shrink. Today, most people take for granted that a continuous, cheap and safe supply of water will be there upon the turn of the tap. Yet, there is growing concern among hydrologists, chemists and others in the field of water that both the quality and quantity of tomorrow's water supply may be in jeopardy. The following article examines the public water supply systems in Illinois and the various problems now confronting them as well as some of the possible solutions to those problems. This is the second in a 6-part series on water resources in Illinois funded by The Joyce Foundation. TO MOST Illinoisans, water is what comes out of faucets. Like most of their countrymen, they have come to expect that the product delivered via those faucets — for most domestic water is a product, as manufactured as the instant coffee or laundry detergents with which it is used — will be available when needed, safe to use and cheap. Most of the time it is. Most Illinoisans (88 percent) get their domestic water from public water supply systems, which officially are those which service at least 10 customers from a common source and via a common distribution system. (The remaining households and businesses get their water from private wells or, in the case of larger companies, from their own surface reservoirs.) There are roughly 2,000 public water systems in Illinois, the largest of which is Chicago's Department of Water which supplies about 4.5 million people. Combined, these systems withdrew 1.78 billion gallons per day from the state's rivers, lakes and wells. These 1.78 billion gallons represent only a tiny fraction of the state's daily average withdrawals; industry (chiefly the electric power industry) withdraws
The most basic water issue of all is, "Is there enough of it?" Illinois is officially described as a "water excess" state. Yet parts of the state face impending supply shortages, in some cases as early as the early 1990s. Nowhere is this thirsty future arriving faster than in northeastern Illinois. Metropolitan Chicago is watered from a variety of sources. Chicago itself and the towns which either buy water from it or run their own systems — 100 in all — take water from Lake Michigan. Other towns more remote from the lake rely on wells sunk like plant roots into either the shallow sand and gravel aquifers which dot the area or into ancient sandstone aquifers which lie roughly 500 feet down. The wealth of water in these stony sponges is huge. The Illinois State Water Survey (ISWS) estimates that the potential daily sustainable yield — the rate at which water withdrawn from wells can be replenished naturally — of all the groundwater sources in the region to be as much as 560 million gallons. (Some state experts disagree, and say the real potential is much lower.) The problem is that, huge as the resource is, the region's thirst is even more huge. In 1864 pumpage from wells in the Chicago area amounted to an estimated 200,000 gallons per day. By 1980 pumpage was 177 million gallons per day (mgd), an 825-fold increase. On average, withdrawals have exceeded recharge rates every year since 1958; during the boom development years from 1966 to 1979 alone, pumpage rose by 92 percent. As pumpage rose, water levels in the aquifers have dropped, roughly 850 feet in the last century in some areas. In recent years the drawdown rate has exceeded even this historical average. In parts of DuPage County in the late 1970s the water table sank by more than 9 feet per year; in parts of Lake County it sank as much as 14 feet. Hydrologists call this kind of exploitation "mining" an aquifer. Yields from any wells have already been reduced to close to half their original capacity, and ISWS experts have warned that some of them will cease to be useful water supplies as early as the 26 | July 1982 | Illinois Issues mid-1980s. A well need not go dry to cease being a viable water source. For instance, as wells are drilled deeper, the cost of pumping water to the surface increases; in some systems, the cost of energy to move water from where it is to where it's needed is the biggest single item in water department budgets. Municipal water shortages The prospect of water shortages in a region which is within spitting distance of the largest fresh water lake system in the world seems not merely ironic but insane. But the water problems of northeastern Illinois illustrate one of the axioms of the water business, which is that while droughts are caused by nature, water shortages are caused by people. There is no shortage of water in and around Chicago. Towns going dry could buy water from systems such as Chicago's or Evanston's, tap nearby rivers, or (as one state official has put it) "stick another straw into Lake Michigan." Expanding municipal water supply systems in a region so crowded by municipals is not as easy as it used to be. Cost is a factor; four suburban cities signed a pact in 1981 to build a 23-mile pipeline connecting them to Evanston's lake-fed water system at a cost of $81 million. Water rates in some towns would have to rise dramatically; in one Cook County suburb the rate for well water has been about 92 cents per thousand gallons, compared to the $2.55 per thousand which it cost for lake water. However, money isn't the only problem. To understand why requires a history lesson. Until the turn of the century, Chicago dumped its sewage into Lake Michigan, from which it also drew its drinking water. Predictably, outbreaks of waterborne diseases such as cholera and typhoid were common; one such outbreak in 1854 killed 1,454 people, the equivalent of 45,000 deaths in the modern city.
In 1889 a solution was proposed of typically Chicagoan audacity. The newly formed Chicago Sanitary District (forerunner of today's Metropolitan Sanitary District of Greater Chicago or MSDGC) undertook to reverse the flow of the Chicago River through construction of a series of sluice gates and a sanitary and ship canal connecting the river to the Des Plaines River and thus to the Illinois River system. The project required moving more earth than was moved during the construcion of the Panama Canal. When it was finished, sewage and storm water runoff was carried via the canal away from the lake by flush water fed into the system from the lake. The city in effect was using Lake Michigan as a mammoth toilet tank, and the Illinois as its sewer. Protests from neighboring states and Canada over this diversion of lake water began nearly as soon as the project was completed in 1900. (Down-state too; sewage from Chicago wasn't treated as much as it was merely diluted, and the resulting pollution of the Illinois River wreaked havoc on that ecosystem.) In 1930, for example, the U.S. Supreme Court ordered that diversion be reduced by 80 percent. Another suit in 1957 resulted eventually in a further high court ruling in 1967 (which itself was modified in 1980) setting the allowable diversion for domestic, navigation and wastewater dilution purposes at roughly 5 mgd. The allocation was to be administered by the Division of Water Resources of the Illinois Department of Transportation (IDOT). Importantly, it allowed the possibility of larger allocations for domestic water use, but only if other reasonable water supply alternatives had been exhausted and if towns receiving lake water adopted certain water conservation practices. The result is a water situation which Stanley Changnon, chief of the ISWS, has described as "nationally unique." Communities applying for allocations of lake water to replace their ailing wells must justify their requests to IDOT's reviewers, who take into consideration projected population growth, industrial expansion and the effects of conservation. As a result, suburban Chicago is the only place in the state where water conservation measures have been adopted in times other than drought emergencies. As is the case with energy, consumers and city halls alike have found that it is possible to "create" new water by saving some of what used to be wasted. The DuPage County city of Elmhurst, for example, was warned several years ago that withdrawals from the sandstone aquifer on which it relied for water would have to be curtailed as early as 1985 if then-current rates of pumpage were not reduced. Elmhurst was awarded an allocation of lake water in 1977. It changed its water rate structure, changed its plumbing code to require water-efficient fixtures, set controls on the summer use of water, and so on. As a result average daily consumption was cut by 15 percent within a year. The drop made it possible to postpone plans for an expensive supplemental well that would have cost $400,000; in addition, the flow of water through the city's sewage treatment plant was reduced so much that it was able to accommodate up to 4,800 new users without expanding. And will the allocation system eventually bring water supply into line with demand in greater Chicago? "It's not gonna happen," asserts Neil Fulton of IDOT's water resources division. Fulton notes that of the approximately 190 communities which have been awarded allocations of Lake Michigan water, more than 80 have not yet (as he puts it) "turned on the tap." Even if every community which is authorized to do so eventually switches to lake water, Fulton expects pumpage to exceed the practical sustainable yield of the important deep sandstone aquifer by a ratio of 2 to 1. There may be some modest local recovery. But the ISWS, for example, notes that the excess of demand over groundwater supply near Joliet and in the Fox River valley will remain at 40 mgd, with the result that water levels there may reach July 1982 | Illinois Issues | 27 critical stages as soon as 1990. Unless communities make plans to tap into the now-little used Fox and Kankakee rivers, the state may someday have to resort to a permit system to regulate groundwater withdrawals. Downstate water woes Water supply problems may be most dramatic in northeast Illinois, but they exist to some degree across the state. In fact, water shortages are a recurrent crisis in many downstate areas. One can chart the progress of many cities
The problem downstate is not so much a shortage of water as a shortage of storage capacity. Roughly 700 of Illinois' water systems take their water from manmade resevoirs, many of them quite small. Most of them are getting smaller every day. They are filling up with silt washed into them, usually from farm fields in their watersheds. The resulting reductions in storage capacity, coupled with increasing demand by customers, has left many small water systems unable to cope with even modest dry spells. In the past, the solution to such shortages was simply to rebuild. Rarely did towns take steps to rehabilitate their water systems. New lakes were cheaper, as was raising the dams (and thus the depth) of old ones. Good reservoir sites are scarcer and have made these alternatives less attractive. That leaves rehabilitation. One can extend the useful life of a lake in several ways. One solution which held promise in the 1950s was evaporation control, by which a monomolecular chemical film is placed atop the lake surface to retard the theft of water by wind and sun; however, evaporation control works well only on small reservoirs and is seldom used today. Dredging is another alternative, but it too has problems. It is expensive; at Carlinville 20 years ago lake mud was removed at the cost of 27 cents per cubic year, while costs today range as high as $5 a yard. The dredged material from some lakes is contaminated by agricultural pesticides and other poisons, and thus poses tricky disposal problems. There may be no land conveniently nearby on which to place the dredged material. Most troubling of all to those who like their solutions permanent is the fact that, unless steps are taken to control sediment inflow at its source, a dredged lake will simply fill up again. As a remedy to chronic storage problems, in fact, dredging is less cost-effective than upstream conservation tillage methods by farmers that control soil erosion. An ounce of chisel plow, in other words, is worth a pound of dredger. But the political and administrative problems facing agencies trying to get sometimes hundreds of landowners spread over as many square miles to undertake expensive conservation techniques for the benefit of an unseen and usually urban population downstream are enormous. Except for scattered experimental programs, few such programs have been attempted. Siltation is not the only threat to surface water supplies. Lake Eureka in Woodford County had been abandoned in favor of wells because of what treatment engineers refer to as "taste-and-odor-problems" that resulted from depletion of the lake's dissolved oxygen — more commonly known as stagnation. The ISWS installed an experimental aeration device — more commonly known as a bubble-maker — which helped restore the lake's ecological balance, and saved the town of Eureka an estimated $35,000 to $40,000 a year in pumping and treatment costs. Drinking water standards As Coleridge once observed in "The Ancient Mariner," the richest supply of water is useless if it is not fit to drink. David Farrell lectures on water matters as part of his job as head of the resource conservation office of the state's Department of Commerce and Community Affairs. He says, "I ask people, 'Consider the trust you show when your child cuts a finger and you 28 | July 1982 | Illinois Issues
instinctively put it under the tap. You're assuming that the substance that comes out of that tap, if not actually salubrious, at least does no harm.'" Insuring that water out of one's tap does one no harm is neither easy nor cheap. In the old days, water treatment was crude, and consisted mainly of chlorine applied in doses strong enough to kill not only bacteria but customers' appetite for water. (Even today, a typical consumer will ingest about one milligram of what amounts to bleach in every liter of tap he drinks.) Modern treatment technology is vastly more sophisticated. Some federal drinking water standards were on the books as early as 1914. It wasn't until 1974 and the passage of the federal Safe Drinking Water Act that minimum national standards were imposed by the U.S. Environmental Protection Agency (USEPA). These standards (which like most such standards were eventually incorporated into regulations enforceable by the states) set limits on the concentrations of 10 common inorganic chemicals, six organic pesticides, bacteria, radioactivity and turbidity (cloudiness) allowable in public water. Consistent with the goals of the new laws, the IEPA offers inspections of and training to local water systems and their personnel. IEPA also provides the required testing of water samples at no cost. (Testing for bacterial contamination was required by state law back in 1954; in 1981 IEPA labs ran tests on nearly a quarter-million samples.) If a water system fails to meet the standards set forth by IEPA, the agency may put the system on "restricted" status. In such cases a system is denied permits for extensions, and is required to make public notice of its failures. Restricted status is reserved for systems which allow water pressure in its water mains to drop, which risks allowing contaminants to enter the distribution system. (Most bacterial contamination of water occurs not at the source but in the distribution system to customers.) Failure to submit water samples for testing is another sin, as is failure to adequately chlorinate water. In 1981 more than 100 systems were placed on restricted status. Setting "safe" limits on pollutants in drinking water has proven a vastly complex enterprise, not the least because regulators often have had to put the regulatory cart before the scientific horse. It has been the policy of both the U.S. and Illinois EPAs to limit the concentration in water not only of substances which are threats to the public health but those which might be. Often this means setting limits before the precise health risks are clear. This is especially true in the case of suspected carcinogens, since the cancers which would confirm the danger usually will not appear for 20 years or more. Prudence, not proof, has been the standard. One example is radium. Orland Park in Cook County asked for and got permission in 1981 from the state to continue to use water from two municipal wells in which levels of radioactivity exceeded state maximums. Orland Park officials asserted that the radioactivity posed no immediate health risk, and the IEPA agreed. (Said an IEPA spokesman at the time, people "won't glow in the dark" after drinking the town water.) However, the argument that the health effects of low-level radition, if not proven harmful, may be assumed to be benign was turned on its head by some Orland Park residents who wanted the wells closed. They countered that the lack of good evidence about health effects meant that such radiation has not been proven harmless, either. The Orland Park episode was hardly unusual in Illinois, which makes it all the more revealing. Not just public health but public finance is at issue in such cases. Orland Park could have solved its radiation problem by either softening the water or by mixing it with water from other wells.
More troublesome than even these natural contaminants, however, is the catalog of unnatural contaminants associated with farming and industry. Toxic chemicals — heavy metals such as cadmium and lead, pesticides, nitrates, industrial solvents and the like. There are an estimated 30,000 different chemicals in production in the U.S., 22 of which are known cancer-causers. Some of them inevitably find their way into Illinois water supplies. Groundwater pollution The contamination of groundwater supplies is especially worrisome, and not just because seven out of 10 public water systems draw their water from wells. Cleaning out a lake is expensive but cleaning out an aquifer is virtually impossible. Contaminants enter aquifers by any of several possible routes, most notably by leaching from leaky landfills. It used to be thought July 1982 | Illinois Issues | 29
that even contaminated water was purified naturally as it percolated through successive subsoil layers which acted as filters. That is now known not always to be the case. That is about all that is known about the newer forms of groundwater pollution. Scientists are just now beginning to understand how contaminants travel underground; staff of the ISWS took advantage of a fertilizer spill in 1978 in Morgan County to track the "plume" as it spread through the aquifer. (Their prediction, based on a computer model, that the aquifer would be cleansed of the contaminant within 14 months proved to be an accurate one.) Because of the lag between pollution cause and effect, it is sometimes difficult to tell when or where pollutants enter underground systems. A novel attempt to reconstruct potential pollution is also underway at the Water Survey, where aquatic chemists have joined with an industrial geographer to locate sites of now-defunct factories, tanneries and similar sources of toxic chemicals. By noting the location of such facilities and the chemical by-products common to each, researchers will be able to assemble a pollution map of the state which may point to potential future trouble spots. (Or as one of the principal researchers puts it, "Prioritize vulnerable aquifers.") If one talks to experts in ground-water in Illinois, one often is told what they don't know. Michael Barcelona, an aquatic chemist with the ISWS, points out, "If what we know about dissolved organic compounds in most systems were dynamite, we couldn't blow our nose. Ten to 15 percent of all the organochlorine pesticides ever used in the U.S. were used in Illinois. Where are they? Probably in sediments. But what chemical reactions occur in sediments and groundwater? The soluble ones tend to be associated with groundwater. Once they are buried, they are cut off from the oxygen which is needed to return them to their mineral state. They were invented to destroy organisms, after all, so micro-organisms have trouble digesting them." The risks of toxics to public water supply is considered real enough by water experts, if still unproven. According to a newspaper's investigative report, for instance, since 1970 the death rate from cancer in the Indiana town of Lake Dalecaria 10 miles southwest of Chicago has
Government budgets are designed only to deal with present dangers in any event, not potential ones. Markwood notes that state budget cuts may force the IEPA to trim its testing program for trihalomethanes and organics in order to maintain its bacterial testing service. Illinois towns 50 years ago thought they had made their water safe by chlorinating it. Water officials no longer operate on the principle that what you can't taste can't hurt you. In his 1976 book, Chicago: Metropolis of the Mid-Continent, geographer Irving Cutler admired that city's modern new water treatment plants and concluded, "The problem of safe drinking water has been solved." Most Illinoisans would probably agree with that happy assessment, and they would probably be wrong. "Safe" drinking water is as much a political and economic definition as a scientific one. As the IEPA's Markwood explains, drinking water is a little like riding in an automobile. There is a risk of harm every time you do it. But no one is suggesting banning automobiles because of the risks. It would cost too much. Likewise, there is a point at which making water safer and safer simply costs too much. James Krohe Jr. is a contributing editor to Illinois Issues and associate editor of the Illinois Times in Springfield; he specializes in planning, land use and energy issues. 30 | July 1982 | Illinois Issues
July 1982 | Illinois Issues | 31 |
|